Search results for "Attitude control"
showing 5 items of 5 documents
Second order optimality conditions in the smooth case and applications in optimal control
2007
International audience; The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. …
Experimental validation of a quaternion-based attitude estimation with direct input to a quadcopter control system
2013
This paper presents a method to calculate the attitude quaternion of a quadcopter with few calculations. The quaternion calculation is based on accelerometers and gyroscopes from an Inertial Measurement Unit (IMU). The quaternion from the accelerometer is calculated as the shortest rotation arc from the gravity vector in the navigation frame. The quaternion from the gyroscope is calculated based on equations of the quaternion derivative. A complementary filter is combining the two quaternions with a componentwise comparison. The attitude estimation is calculated without any trigonometric functions. The quaternion is directly used as an input to the attitude controller. The attitude controll…
Implementation of a Drosophila-inspired orientation model on the Eye-Ris platform
2010
A behavioral model, recently derived from experiments on fruit-flies, was implemented, with successful comparative experiments on orientation control in real robots. This model has been firstly implemented in a standard CNN structure, using an algorithm based on classical, space-invariant templates. Subsequently, the Eye-Ris platform was utilised for the implementation of the whole strategy, at the aim to constitute a stand alone smart sensor for orientation control in bio-inspired robotic platforms. The Eye-Ris vl.2 is a visual system, made by Anafocus, that employs a fully-parallel mixed-signal array sensor-processor chip. Some experiments are reported using a commercial roving platform, …
A Geometrical Approach for Vision Based Attitude and Altitude Estimation for UAVs in Dark Environments
2012
International audience; This paper presents a single camera and laser system dedicated to the realtime estimation of attitude and altitude for unmanned aerial vehicles (UAV) under low illumination conditions to dark environments. The fisheye camera allows to cover a large field of view (FOV). The approach, close to structured light systems, uses the geometrical information obtained by the projection of a laser circle onto the ground plane and perceived by the camera. We propose some experiments based on simulated data and real sequences. The results show good agreement with the ground truth values from the commercial sensors in terms of its accuracy and correctness. The results also prove i…
Adaptive Attitude Control of a Rigid Body with Input and Output Quantization
2022
Author's accepted manuscript. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, the adaptive attitude tracking the problem of a rigid body is investigated where the input and output are transmitted via a network. To reduce the communication burden in a network, a quantizer is introduced in both uplink and downlink communication channels. An adaptiv…